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Abstract. Using flat electromagnetic resonators we experimentally verify the existence of vortices
in the Poynting vector describing the energy transport in a rectangular billiard. We show that these
vortices appear as a consequence of the nontrivial topological structure of the underlying phase of
the electromagnetic field. The results are also relevant for vortices appearing during the quantum
transport.

Recent theoretical studies have stressed the importance of topological defects in the structure
of the quantum phase. Such defects are responsible for many observable phenomena known
mainly to occur in macroscopic quantum systems, for example, superconductors or superfluid
helium. However, the phase defects also manifest themselves in the ordinary quantum
mechanics. The fact that quantum probability current may exhibit vortices centred at the
singular points of the quantum phase has been pointed out already by Dirac [1]. The physical
relevance of these vortices was, however, unclear. It has been demonstrated recently [2] that
the existence of vortices in the quantum probability flow of charged particles is manifest by
a nonzero magnetic dipole moment which leads to measurable effects (at least for a suitable
system geometry).

In the case of two-dimensional quantum systems it is possible [2, 3] to identify the
configuration space with a region in the complex plane. In such a way, the topology of
the related quantum phase can be described with the help of a Riemannian surface. The
multivaluedness of the phase (which is defined as modulo 2π ) can be expressed in terms of
various Riemannian sheets and the topological defects can be identified with branching points
and cuts on the Riemannian surface. To be more explicit, let us write the probability current
densityEj(Er):

Ej(Er) = h̄

m
Im (ψ∗(Er) E∇ψ(Er)) (1)

and the wavefunctionψ as

ψ = √ρeiS (2)

whereρ = |ψ |2 is the probability density andS denotes the phase. It is clear that the phaseS

cannot be defined on the nodal points of the wavefunctionψ , which represent singularities of
S. The nontrivial topological structure of the phase leads to the appearance of vortices in the
related probability current. To see this we insert (2) into (1) and get

Ej(Er) = h̄

m
ρ(Er) E∇S(Er). (3)
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The current Ej can be understood as a flow of the probability densityρ with a velocity
Ev = (h̄/m) E∇S. The vorticity ofEv evaluated along a closed curve0 gives [4]∫

0

Ev dEl = h̄

m
δS = 2π

h̄

m
n n = 0,±1,±2, . . . (4)

whereδS is the phase change when winding once around the curve. The wavefunction (2)
must be single-valued, which means that the differenceδS can only be equal to a multiple of
2π .

If the phaseS does not have a branching point inside0, the difference equals to zero and
the vorticity nullifies. If, on the other hand,0 encircles a branching point ofS, the vorticity of
the velocity fieldEv is not zero. In this situation the corresponding probability current exhibits
a vortex centred at the nodal point.

It has been argued in [2] that the vortices of the quantum probability current produce
nonzero magnetic dipole moments. To measure this effect is, however—due to the low values
of the magnetic dipole—extremely complicated and, even for the most optimistic situation, is
only on the border of today’s achievable accuracy. There is, however, another experimental
possibility to verify the existence of the vortices which is based on the fact that electromagnetic
fields inside flat electromagnetic resonators fulfil the same equations of motion as the quantum
particle. This fact has been successfully used for experimental verification of the spectral
properties [5–7] and the wavefunctions [8,9] of chaotic two-dimensional quantum billiards.

The transport of electromagnetic energy through the resonator is described by the Poynting
vector

EP(Er, t) = c

4π
( EE × EH). (5)

Entering with ansatzEE(Er, t) = Re( EE(Er)e−iωt ), EH(Er, t) = Re( EH(Er)e−iωt ) into the Maxwell
equations, (5) reads

EP(Er, t) = c

4πk
(Re( EE)× ( E∇ × Im EE)) (6)

with k being the wavevector of the fieldEE(Er). For quasi-two-dimensional resonators this
formula reduces to

EP(Er, t) = c

4πk
(ER cos(ωt) +EI sin(ωt)) · E∇(EI cos(ωt)− ER sin(ωt)) (7)

whereER andEI are real and imaginary parts of thez component ofEE(Er), respectively. Taking
only the stationary part ofEP(Er, t), we arrive at

〈 EP(Er, t)〉 = c

8πk
Im (E∗z (Er) E∇Ez(Er)). (8)

This is in complete analogy with equation (3), where the stationary part of the Poynting vector
replaces the probability current density, and thez component of the electric field strength
replaces9(Er).

It is a well established theoretical concept that defects in phase topology are responsible
for vortex phenomena in various quantum systems (for instance, the appearance of Abrikosov
vortices in superfluid helium [10]). They have also been observed as dislocations in wave
trains of ultrasonic echoes [11]. More recently, the defects were seen experimentally in optical
systems and interpreted as angular momenta of light [12,13].

However, detailed experimental verification has still been missing. The point is that one
can usually measure the probability/energy transport in the system and verify the existence of
the vortices, but the topology of the phase itself escapes a direct observation. The experiment
described below allows a direct measurement ofEz(Er) as a function of position, including its
phase, and constructs the related Riemannian surface.
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Figure 1. (a) TransmissionTant = |tant|2 from the entrance antenna to the probing antenna.
(b) TransmissionTabs from the entrance antenna to the absorber.

The experimental set-up is a further development of an apparatus described previously
in [8,14]. The cavity has a rectangular shape with dimensionslx = 34 cm,ly = 24 cm where
the entrance antenna is positioned atx = 8 cm,y = −2 cm. The electromagnetic energy has
been transported from this antenna to a circular absorber with radiusr = 2.5 cm placed at
x = −6 cm,y = 5 cm (see figure 2). The position of the upper plate supporting the probing
antenna is varied by means of step motors in thex- andy-directions with a stepsize of 5 mm.
The transmission amplitudetant between entrance and probing antenna has been measured,
including the phase, by means of a Wiltron 360B vector network analyser. The influence of
the cables, connectors, antenna wires etc on the transmission has been determined in a separate
measurement and is not included in the figures presented below.

It has been shown in [14] thattant is proportional to the electric field strength at the position
Er of the probing antenna. In figure 1(a) the transmissionTant= |tant|2 is shown for the position
(x = −10 cm,y = 2 cm) of the probing antenna. From the measured electric field strength
Ez(Er) the energy flow is determined by means of equation (8).

The intensity of the electromagnetic field inside the resonator depends on its frequency.
For certain frequencies there is an enhanced transport of the electromagnetic energy from
the antenna to the absorber. The transmission from the entrance antenna to the absorber,
normalized to the total energy within the resonator, is plotted in figure 1(b) as a function
of frequency. The figure has been obtained by integrating the flow through the surface of
a square with a sidelength of 8 cm, covering the absorber (a square has been chosen, since
the data have been taken on a square lattice: the shape of the area is irrelevant because of
Gauss’s law). Figure 2 shows the Poynting vector in the resonator for the frequency marked
by a dashed line in figure 1. The vortices are clearly visible. We have also evaluated the
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Figure 2. Flow of the electromagnetic energy from the entrance antenna (small circle) to the
absorber (large circle) at frequencyv = 3.7 GHz (marked by the dashed line in figure 1). At the
solid curves the wavefunction has acquired a phase of 2π upon encircling a vortex. These curves
correspond to cuts in the Riemannian surfaces (see figure 3).

Figure 3. Three-dimensional view of the phase of the flow pattern shown in figure 2.

corresponding phase of the related electromagnetic field and plotted its cuts into the same
plot (thick curves). One can see—in full agreement with the theory—that the cuts start at
the centre of the vortices. This supports the theoretical finding that a vortex winds around a
branching point of the related Riemannian surface of the phase. All observed vortices have
the vortex numbern = ±1. Vortices with higher vortex numbersn have not been observed
in the experiment. The phase of the field is plotted in figure 3. The positions of the entrance
antenna and the absorber are marked by inserted cylinders. The complicated structure of the
corresponding Riemannian surface together with the branching points and the cuts is clearly
visible. Similar pictures can also be plotted for other frequencies. Although the position and
number of vortices changes, the basic structure and the relation between the vortices and the
phase topology remains unchanged.

Figure 1(b) shows that there are a number of frequencies where the flow to the absorber
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Figure 4. (a) Greyscale plot of|E|2 at the frequencyν = 3.8 GHz (marked by a dotted line in
figure 1). At this frequency there is no flow to the absorber. (b) Flow pattern at the same frequency.
At the points of large field strength a maximal flow to the probing antenna is observed.

is close to zero. This means, however, that at these frequencies there must be a node line
at the surface of the absorber, or, in other words, these frequencies must correspond to
eigenfrequencies of the Sinai billiard obtained by replacing the absorber surface by a reflecting
wall. This interpretation is corroborated by figure 4(a) showing a map of|E|2 in a greyscale at
a frequency corresponding to the dotted line in figure 1. The figure clearly exhibits a bouncing
ball eigenfunction of the Sinai billiard. Figure 4(b) shows the corresponding flow pattern.
Since at this frequency the flow to the absorber is suppressed, the otherwise negligible leak
to the probing antenna becomes dominant (the absorption in the walls is too small to become
observable in the flow pattern). The leak flow is maximized at the points of large field strengths
as expected. The same findings can be obtained from a comparison of figures 1(a) and (b): the
relative transmission from the entrance to the probing antenna shows a maximum whenever
the transmission to the absorber exhibits a minimum.

To conclude, let us mention that the particular setting of the measured system is not
substantial for the underlying physics. The rectangular shape of the resonator and the circular
shape of the absorber have been chosen due to technical reasons. We expect that similar
phenomena will also be observed in different configurations, provided there is a flow of
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electromagnetic energy inside the system and the system is not integrable (transport through
ideal integrable waveguides is not accompanied by phase defects). It must be stressed, however,
that the existence of phase defects and related vortices is of pure wave origin and is not related
to the underlying classical dynamics. In such a way it cannot be seen as a signature of ‘quantum
chaos’.

Acknowledgments

This work has been partially supported by the Theoretical Physics Foundation at Slemeno,
by the grant GAAV 1048804 from the Czech Academy of Sciences and by the Deutsche
Forschungsgemeinschaft via the Sonderforschungsbereich ‘Nichtlineare Dynamik’.

References

[1] Dirac P 1931Proc. R. Soc.A 13360
[2] Exner Pet al 1998Phys. Rev. Lett.801710
[3] Berggren K and Ji Z-L 1993Phys. Rev.B 476390
[4] Hirschfelder J 1977J. Chem. Phys.675477
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